Milborne First School: Stem Sentences in Maths

Please add to this document over the academic year. This will help us create a bank of stem sentences and also see the progression of stem sentences across the year groups for different areas of maths. Please display these in the classroom or print relevant ones to stick in maths journals for the children to answer. Some ready made ones are in shared files- teachers- maths.
Please add these to the key skills powerpoints and knowledge organisers for daily practise ensuring that they are repeated each term.

General					
	Reception	Year 1	Year 2	Year 3	Year 4
Stem Sentenc es	I started by... The pattern I noticed was...	I solved the problem by... I already know that...so... I wonder why...	I noticed that... I think...because... I checked by...	I noticed that... It must be because.. If I know... then I know.... I used the inverse of..	A better strategy would be... I was systematic because 1...
Number Place Value					
	Reception	Year 1	Year 2	Year 3	Year 4
Stem Sentenc e 1	This is the number It has \square ones.	Ten ones are equal to one ten. We have one group of ten. We have ten. This is the number \square. The \square represents \square tens The $\quad \square$ represents $\quad \square$ ones.	There are \qquad _tens and \qquad \qquad There are ___ altogether. The number \qquad is written as These words represent the number	There are ten ones in ten. (from Yr 1) There are ten tens in one hundred. There are ten hundreds in one thousand There are one hundred ones in one hundred.	There are ten thousands in 10000 There are four groups of twenty five in one hundred.
Stem Sentenc e 2	This is the number It has \square te tens and tens and \square one \square ones mak ones make	$\begin{aligned} & \square \text { is greater than/more than } \\ & \text { because } \\ & \text { is fewer than/less than } \\ & \square \text { because .. } \end{aligned}$	The igit__ has the value of _-		In the number __ the digit ___ is in the thousands place, the digit -is in the hundreds place. The digit is in the ten place. The digit __is in the ones place. The value of the digit is

Stem Sentenc e 3	\square is greater than/more than because is fewer than/less than because ..	This is the number It has tens and ones. tens and ones make	I can partition___into ___ and __	\qquad is less than \qquad . It is the smallest number. \qquad is more than \qquad . It is the greatest number.	\qquad thousands is smaller than \qquad thousands. \qquad is smaller than \qquad \qquad thousands is greater than \qquad thousands, so \qquad is greater than \qquad
Stem Sentenc e 4	For counting in tens: This is _. _ is ten more than _. _ is ten less than ..	-	The numbers are increasing (decreasing) because \qquad	One hundred is divided into \qquad equal parts; so each part/ division has a value of \qquad	We round a number down when the digit in the ones place is less than five. We round a number up when the the digit in the ones place is five or more.

Addition and Subtraction

	Reception	Year 1	Year 2	Year 3	Year 4
Stem Sentence 1	I have ... ones here and ... ones here. I will have ... ones altogether.	I have ... tens here and ... ones here. I will have altogether.	I know that _ + _is equal to _ so _ tens + _tens is equal to_ When we find ten more, the tens digit changes and the ones digit stays the same e.g When we find ten less, the tens digit changes and the ones digit stays the same.	I know that \qquad plus \qquad is equal to (the same as) ten (10)/ \qquad Unless bridging: when the ones make ten or more. For example \qquad $+$ \qquad When adding tens, if there are no ones, only the tens digit needs to change. For example \qquad $+$ \qquad $=$ \qquad Unless bridging: when the tens make one hundred or more. For example \qquad $+$ \qquad = \qquad When adding hundreds, if there are no tens and no ones, only the hundreds digit changes.	When adding hundreds only
Stem Sentence 2	I have ... tens here and ... ones here. I will have altogether.	I have ... tens here and ... tens here. I will have altogether.	When we add three numbers, the total will be the same whichever we add first.	I know that ten/ \qquad minus \qquad is equal to (the same as) \qquad - So, ten tens minus \qquad tens is equal to \qquad tens. 100 minus \qquad is equal to \qquad .	

Stem Sentence 3	I know I will have a teen number because I have one ten and ... ones.	... is the whole number. I subtract tens. I am left with	There are \qquad \qquad and \qquad Altogether there are \qquad \qquad	I know that \qquad plus \qquad is equal to ten, so I know that \qquad plus \qquad is equal to one hundred. I know that ten minus \qquad is equal to \qquad , so I know that one hundred \qquad is equal to
Stem Sentence 4	... is the whole number. I subtract ones. I am left with			I know that \qquad minus \qquad is equal to \qquad So \qquad tens minus \qquad tens is equal to \qquad tens. On hundred and \qquad minus \qquad is equal to

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Multiplication and Division} \\
\hline \& Reception \& Year 1 \& Year 2 \& Year 3 \& Year 4 \\
\hline \begin{tabular}{l}
Stem \\
Sentence 1
\end{tabular} \& \& Equal means the same. Equal means it is fair. \& \begin{tabular}{l}
There are \(\square\)
\(\qquad\) altogether. \\
The \(\qquad\) are divided equally between groups. \\
Equally means there are the same number of \(\qquad\) in each group. \\
There are \(\square\)
\(\qquad\) in each group.
\end{tabular} \& \begin{tabular}{l}
I have \(\square\) \\
altogether. \\
I share them equally between

\qquad

Equally means there are the same number in each group.

There are \square ,
\qquad in each group.

 \&

I have \square

altogether.

I am _(sharing)_them equally

between \square

This can also be called division.

I have divided \square into \square groups. My answer is \square .
\end{tabular}

\hline Stem Sentence 2 \& \& | There are altogether |
| :--- |
| We share them equally between |
| Equally means exactly the same amount. We share the until there are none left and each has an equal number of in it. |
| There are | \& When ... have been shared equally and each group has an equal number of, sometimes there might be ... left over. We call these remainders. \& | There are \square |
| :--- |
| They are shared equally between \square \qquad |
| Equally means the same amount in each group. | \& | I have \square |
| :--- |
| altogether. |
| I am _(grouping)_them equally |
| between \square |
| This can also be called division. |

\hline
\end{tabular}

Fractions and Decimals

	Reception	Year 1	Year 2	Year 3	Year 4
Stem Sentence 1		2 halves make 1 whole. A half is 2 equal parts. To find half of \square you must share equally between 2. Each group gets A half can be written as $1 / 2$	Each piece is 1 part out of equal parts. We write it as $1 / 2$	Equivalent Fractions Equivalent means equals or the same as. To find an equivalent fraction, a fraction that is the same amount as another fraction, you multiply the top, the numerator, and the bottom, the denominator, by the same number. For example $1 / 2$ is the same as 2/4. My example \qquad is the same as \qquad $\frac{1}{2}=\frac{2}{4}$ $x 2$ The simplest fraction is the	A fraction is used to describe a whole that has been split into parts. The whole can be a shape, an amount of objects or a number. We represent a fraction using a fraction bar. The fraction bar shows 2 pieces of information. Above the fraction bar is the numerator. This shows how many parts of the whole you are working with/have visible. Below the fraction bar is the denominator. This shows how many parts the whole has been split into altogether.

| | | | | There \square
 tenths. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Measurement

	Reception	Year 1	Year 2	Year 3	Year 4
Stem Sentence 1		We measure time in hours, minutes and seconds.	There are $\mathbf{6 0}$ minutes in an hour There are 60 seconds in one minute	There are $\mathbf{1 0 ~ m m ~ i n ~} 1 \mathrm{~cm}$ therefore \qquad mm is cm. \qquad There are $\mathbf{1 0 0} \mathrm{cm}$ in 1 m therefore \qquad cm is \qquad m. There are 1000 m in 1 km therefore m is km .	There are 10 lots of 100 g in a kg. 100 g is the same as 0.1 kg . I can convert g into kg by dividing by 100 . I can convert kg into g by multiplying by 100 .
Stem Sentence 2		The long hand shows the minutes. The short hand shows the hour.	Each number on an analogue clock represents 5 minutes. 12 fives make 60.	There are \qquad g in 1 kg . If an item weighs more than 1000 g , the measurement is given in kg and g . The mass of the kg \qquad g. On a set of scales each line can represent more than one g . On these scales each line represents \qquad g.	There are 10 lots of 100 ml in a litre. 100 ml is the same as 0.1 litre. I can convert ml into litres by dividing by 100. i can convert litres into ml by multiplying by 100.
Stem Sentence 3			There are 100 cm in 1 metre	The table measures $\quad \mathrm{cn} \square 00$ cm is the same 1 m so $\square^{\mathrm{m}}=1 \mathrm{~m}$	Time is measured in hours, minutes and seconds. $\begin{aligned} & \text { There are } \square \text { seconds in a } \\ & \text { minute and } \square \text { minutes in an } \end{aligned}$ hour.

				Therefore, there are \square minutes in \square hour/s. \square
There are				
minutes.				

Geometry: shapes and position

	Reception	Year 1	Year 2	Year 3	Year 4
Stem Sentence 1	This is a 3D shape. A 3D shape is not flat.	You can describe a 3D shape by the number of faces, vertices and eages.	$\begin{aligned} & \text { A triangle has } \quad \text { sides. A square } \\ & \text { has ___ equal sides. A rectangle } \\ & \text { has__ sides. } \end{aligned}$	Horizontal Lines go across from left to right or right to left. (arrow picture) Vertical Lines go up and down from top to bottom or bottom to top. (arrow picture)	A line of symmetry divides a shape so that one side is the mirror image of the other side.
Stem Sentence 2	This is a picture of 3 3D shape.		$\left\lvert\, \begin{aligned} & \text { This is a } \\ & \begin{array}{l} \text { linas } \\ \text { enges. } \\ \text { ences, } \end{array} \\ & \text { Dices and } \end{aligned}\right.$	Parallel Lines are two \qquad lines opposite each other. The \qquad meet or make an \qquad together	If I fold a figure/image along the line of symmetry, both sides will completely overlap each other
Stem sentence 3				Perpendicular Lines are two straight lines that meet together and make a right angle	A co-ordinate tells us the position of an object on a grid. The grid has a horizontal axis called the x axis. The grid has a vertical axis called the y axis. The co-ordinate is the position in relation to the x and y axis. The first digit is the x axis, the second digit is the y axis.

Statistics, Ratio, Proportion and Algebra

	Year 2	Year 3	Year 4
Stem Sentence 1			A graph is used to present data. Different graphs show different types of data. This is a \qquad graph. It shows _(continuous/ finite) \qquad
Stem Sentence 2			Building on from stem sentence above.... This graph shows __describe information \qquad (eg, the rate of growth over a year). Other data that might be recorded in a \qquad graph includes \qquad \qquad (give 2 examples)

